MULTIPLE COICE QUESTIONS (1 MARK EACH)

1.	The order and the de	gree of the differential	equation $\left(1+3\frac{dy}{dx}\right)^2$	$=4\frac{d^3y}{dx^3}$ respectively	
	(a) $1, \frac{2}{3}$	(b) 3,1	(c) 3,1	(d) 1,2	
2.	Write the order and t	the degree of the differ	ential equation $\left(\frac{d^4y}{dx^4}\right)$	$\int_{0}^{2} = \left[x + \left(\frac{dy}{dx} \right)^{2} \right]^{3}$	
	(a) 4,2	(b) 3,1	(c)3,3	(d)1,2	
3.	The degree of the differential equation				
		$\left(\frac{d^{2y}}{dx^2}\right)^2 + \left(\frac{dy}{dx}\right)^2 = x^2$	$\sin\left(\frac{dy}{dx}\right)$ is 0		
	(a) 1	(b) 2	(c) 3	(d) not defined	
4.	The order of differen	tial equation $\frac{d^4y}{dx^4} + \sin \frac{d^4y}{dx^4}$	$\ln\left(\frac{d^2y}{dx^2}\right) = 0is$		
	(a) 2	(b) 4	(c) 1	(d) None of these	
5.	Integrating factor of t	the differential equation	$ (x+y)\frac{dy}{dx} = 1 is$		
	(a) $\cos x$	(b) tan <i>x</i>	(c) $\sec x$	(d) $\sin x$	
ó.	Which of the following	ng differential equation	satisfied by $y = e^{mx}$		

16. A homogenous differential equation of the form $\frac{dx}{dy} = h\left(\frac{x}{y}\right)$ can be solved by making the

Reason(R): If the differential equation is a polynomial in terms of its derivatives then its degree is defined.

VERY SHORT ANSWER TYPE QUESTIONS (2 MARKS EACH)

21. Assertion(A): The Degree of the differential equation $\frac{d^2y}{dx} + 3\left(\frac{dy}{dx}\right)^2 = x^2 \log\left(\frac{d^2x}{dx^2}\right)$ is not

1. Write the sum of the order and degree of the differential equation.

defined.

$$1 + \left(\frac{d^2 y}{dx^2}\right)^5 = 7\left(\frac{d^3 y}{dx^3}\right)^4$$

- 2. The integrating factor of the differential equation $x \frac{dy}{dx} y = \log x$ is ?
- 3. The solution of the differential equation $x \frac{dy}{dx} + y = e^x$ is ?
- 4. The difference of degree and order of the differential equation $\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}} = \frac{d^2y}{dx^2}$.
- 5. Show that the differential equation given by $x^2 \frac{dy}{dx} = x^2 2y^2 + xy$ is Homogeneous.
- 6. Write the degree and the order of the differential equation $y''' + y^2 + e^y = 0$
- 7. The integrating factor of $\sin x \frac{dy}{dx} + (2\cos x)y = \sin x \cdot \cos x$ is?
- 8. The General solution of $\frac{dy}{dx} = \sqrt{4 y^2}$ where -2<y<2
- 9. Form the differential equation of the family of the curves $y = a\sin(x+b)$ where a.b are arbitrary constants.
- 10. Find the differential equation of a curve passing through the point (0,-2) given that at any point (x, y) on the curve, the product of the slope of its tangent and y coordinate of the point is equal to the x coordinate of the point.

SHORT ANSWER TYPE QUESTIONS (3 MARKS EACH)

- 1. Find a particular solution of the differential equation ; given y=0 when x=1
- 2. Solve the differential equation $(1+x^2)\frac{dy}{dx} + 2xy 4x^2 = 0$. subject to the initial condition y(0)=0
- 3. Find the solution of the differential equation $\log \left(\frac{dy}{dx} \right) = ax + by$
- 4. Find the general solution of the differential equation $\frac{dy}{dx} + \frac{1}{x} = \frac{e^y}{x}$
- 5. Solve the differential equation $(e^x + 1)ydy = e^x(y+1)dx$
- 6. Find the particular solution of the differential equation $\frac{dy}{ds} = y \tan x$ when y(0)=1
- 7. Solve the differential equation $x(x^2-1)\frac{dy}{dx}=1$, y=0 when x=2
- 8. Find the particular solution of the differential equation $xdx ye^y \sqrt{1 + x^2} dy = 0$, given that y=1 when x=0
- 9. Solve the differential equation $\frac{dy}{dx} + 2xy = y$

10. Solve the differential equation
$$x\cos\left(\frac{y}{x}\right)\frac{dy}{dx} = y\cos\left(\frac{y}{x}\right) + x$$

11. Find the particular solution of the differential equation
$$x \frac{dy}{dx} + y + \frac{1}{1 + x^2} = 0$$

12. Find the general solution of the differential equation
$$x(y^3 + x^3)dy = (2y^4 + 5x^3y)dx$$

13.

Find the general particular solution of the differential equation

$$\frac{dy}{dx} + y \sec x = \tan x$$
 where $x \in \left[0, \frac{\pi}{2}\right]$ given that $y = 1$ when $x = \frac{\pi}{4}$

14.

Solve the differential equation
$$\frac{dy}{dx} = \frac{x+y}{x-y}$$

15.

Solve the differential equation $(1+x^2)dy + 2xydx = \cot xdx$

LONG ANSWER TYPE QUESTIONS (5 MARKS EACH)

- 1. Find the particular solution of the differential equation $(x+y)\frac{dy}{dx} = (x+2y)$
- 2. Find the particular solution of the differential equation $x \frac{dy}{dx} + y x + xy \cot x = 0$
- 3. Solve the differential equation $(\tan^{-1} y x)dy = (1 + y^2)dx$ given that x = 1 when y = 0
- 4. Find the particular solution of the differential equation $\frac{dy}{dx} = \frac{xy}{x^2 + y^2}$ given that y = 1 when x = 0
- 5. Find the particular solution of the differential equation $(3xy + y^2)dx + (x^2 + xy)dy = 0$ for x = 1, y = 1.

CASE STUDY BASED QUESTIONS (4 - MARKS EACH)

CASE STUDY-1

1. An equation involving derivatives of the dependent variable with respect to the equation. A differential equation of the form $\frac{dy}{dx} = F(x,y)$ is said to be homogeneous if F(x,y) is a homogeneous function of degree zero whereas a function F(x,y) is a homogeneous function of degree n.

If
$$F(\lambda x, xy) = \lambda^n F(x, y)$$
 To solve a homogeneous differential equation of the type $\frac{dy}{dx} = F(x, y) = g\left(\frac{y}{x}\right)$.

We make the substitution y=vx and the separate the variables. Based on the above, answer the following questions:

- (i) Show that $(x^2 y^2)dx + 2xy = 0$ is differential equation of the type $\frac{dy}{dx} = g\left(\frac{y}{x}\right)$
- (ii) Solve the above equation to find its general solution.

END DOWN TO SEL DOCKEN DOCK & CATEDING DATE LANDER MIGHLEDT -

A first order – first degree differential equation is of the form $\frac{dy}{dx} = F(x, y)$

If F(x,y) can be expressed as product of g(x).h(y) where g(x) is a function of x and h(y) is a function - OSKO FICHER MORE MUSH ONEO

of y then

$$\frac{dy}{dx} = g(x).h(x) \Rightarrow \int \frac{1}{h(x)} dy = \int g(x).dx$$

The solution of differential equation by this method is called variable separable.

Based on the above information answer the following questions.

- (i) Find the general solution of differential equation: $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$
- What is solution of differential equation (ii)

$$\frac{dy}{dx} = -4xy^2$$

MULTIPLE COICE QUESTIONS (1 MARK EACH)

1. Find a unit vector in the direction of vector $\mathbf{a}\vec{a} = 6\hat{\imath} + 2\hat{\jmath} + 3\hat{k}$

(D) $l = m = n = \pm \frac{1}{\sqrt{2}}$

	$(A) \frac{6\hat{\iota} + 2\hat{\jmath} + 3\hat{k}}{ 7 }$	(B) $\frac{6\hat{t}+2\hat{j}+3\hat{k}}{ 6 }$	(C) $\frac{6\hat{\imath}+2\hat{\jmath}+3\hat{k}}{ 5 }$	$(D) \frac{6\hat{\imath}+2\hat{\jmath}+3\hat{k}}{ 1 }$			
	2. Write direction ratio of the vector $\vec{a} = \hat{\imath} + \hat{\jmath} - 2\hat{k}$						
	(A) $(1,1,-2)$	(B) (1,1,2)	(C) $(1,-1,2)$	(D) (-1,1,2)			
	3. Write the value (A) 1	of $(\hat{\imath} \times \hat{\jmath}) \cdot \hat{k} + (\hat{\jmath} \times \hat{k}) \cdot \hat{\imath} + (\hat{k} \times \hat{k})$ (B) 3	(C) 2	(D) 0			
4. Find $ \vec{x} $ if for a unit vector \vec{a} , $(\vec{x} - \vec{a}) \cdot (\vec{x} + \vec{a}) = 15$							
	(A) ±1	(B) ±4	(C) ±2	(D) ±3			
5. Find the angle between $\vec{a} \& \vec{b}$ if $ \vec{a}.\vec{b} = \vec{a}x \vec{b}$							
	(A) 0^0	(B) 30°	(C) 60°	(D) 90°			
6. Find Projection of \vec{a} on \vec{b} if $\vec{a} \cdot \vec{b} = 8$, $\vec{b} = 6\hat{i} + 2\hat{j} + 3\hat{k}$							
	(A) $\frac{8}{3}$	(B) $\frac{8}{5}$	(C) $\frac{8}{7}$	(D) $\frac{8}{9}$			
	7. Find the angle between two vectors vector \vec{a} on the vector \vec{b} with magnitudes $\sqrt{3}$ and 2 respectively						
	having $\vec{a} \cdot \vec{b} \cdot = \sqrt{6}$ (A) $\frac{1}{5}$	(B) $\frac{1}{3}$	(C) $\frac{1}{2}$	$(D)\frac{1}{\sqrt{2}}$			
	8. Let the vector \vec{a} and \vec{b} be such that $ \vec{a} = 3$ and $ \vec{b} = \frac{\sqrt{2}}{3}$ and the angle between \vec{a} and \vec{b} . So that $\vec{a} \times \vec{b}$ is						
	a unit vector. (A) $\frac{\pi}{3}$	(B) $\frac{\pi}{6}$	(C) $\frac{\pi}{5}$	(D) $\frac{\pi}{4}$			
9	9. Find $ \vec{x} $ if for a unit vector \vec{a} , $(\vec{x} - \vec{a})$, $(\vec{x} + \vec{a}) = 15$						
(.	A) ±1	(B) ±4	(C) ±2	(D) ±3			
1	10. What are the direction cosines of line which makes equal angles with the coordinate axis.						
(/	A) $l=m=n=\pm\frac{1}{\sqrt{2}}$	$\frac{1}{3}$ (B) $l = m = n = \pm \frac{1}{\sqrt{7}}$ (C)	$l=m=n=\pm\frac{1}{5}$				

ASSERTION-REASON BASED QUESTIONS (1 MARK EACH)

Each of the following questions contains statement -1(Assertion) and statement-2(Reason) and has following four choices (a),(b),(c),(d), only one of which is correct answer. Mark the correct choice

- (a) Statement 1 is true, Statement 2 is true and 2 is correct explanation of 1
- (b) Statement 1 is true, Statement 2 is true and 2 is not correct explanation of 1
- (c) Statement 1 is true, Statement 2 is false
- (d) Statement 1 is false, Statement 2 is true
- 1. **ASSERTION**: In triangle ABC, $\overrightarrow{AB} + \overrightarrow{AB} + \overrightarrow{AB} = 0$

REASON: If $\overrightarrow{OA} = \vec{a} \ \overrightarrow{OB} = \vec{b}$ then $\overrightarrow{AB} = \vec{a} + \vec{b}$

2. ASSERTION:

 $\vec{a} = \hat{\imath} + p \hat{\jmath} + 2\hat{k}$, $\vec{b} = 2 \hat{\imath} + 3\hat{\jmath} + q\hat{k}$ are parallel vectors if p=3/2, q=4

REASON:

If $\vec{a} = a \hat{\imath} + b \hat{\jmath} + c\hat{k}$, $\vec{b} = d \hat{\imath} + e\hat{\jmath} + f \hat{k}$ are parallel if a/d = b/e = c/f

VERY SHORT ANSWER TYPE QUESTIONS (2 MARKS EACH)

- 1. Write the position vector of the mid-point of the vector joining the points P(2, 3, 4) and Q(4, 1, -2)
- 2. If $\hat{\imath} + \hat{\jmath} + \hat{k}$, $2\hat{\imath} + 5\hat{\jmath}$, $3\hat{\imath} + 2\hat{\jmath} 3\hat{k}$ and $\hat{\imath} 6\hat{\jmath} \hat{k}$ are the position vectors of the points A, B, C and D, Find the angle between \overrightarrow{AB} and \overrightarrow{CD} . Deduce that \overrightarrow{AB} and \overrightarrow{CD} are collinear.
- 3. Find the position vectors of the point R which divides the line joining two points P and Q whose position vectors are $(2\vec{a} + \vec{b})$ and $(\vec{a} \vec{3}\vec{b})$ respectively in the ratio 1:2.

SHORT ANSWER TYPE QUESTIONS (3 MARKS EACH)

- 1. What is the angle between vectors $\vec{a} \& \vec{b}$ with magnitude $\sqrt{3}$ and 2 respectively? Given $\vec{a} \cdot \vec{b} = 3$
- 2. Write the position vector of a point dividing the line segment joining points A and B with position vectors $\vec{a} \& \vec{b}$ externally in the ratio 1:4.
- 3. If $\vec{a} = \hat{i} + \hat{j}$, $\vec{b} = \hat{j} + \hat{k}$, $\vec{i} = \hat{k} + \hat{i}$, find a unit vector in the direction of $\vec{a} + \vec{b} + \vec{c}$.
- 4. Let $\vec{a} \& \vec{b}$ be two vectors such that $|\vec{a}| = 3$ and $|\vec{b}| = \frac{\sqrt{2}}{3}$ and $\vec{a} \times \vec{b}$ is a unit vector. Then what is the angle between $\vec{a} \& \vec{b}$?
- 5. Write the value of p for which $\vec{a} = 3\hat{\imath} + 2\hat{\jmath} + 9\hat{k}$ and $\vec{b} = \hat{\imath} + p\hat{\jmath} + 3\hat{k}$ are parallel vectors and perpendicular vectors.

CASE STUDY BASED QUESTIONS (4 - MARKS EACH)

1. Geetika house is situated at Kanke at point o, for going to Alok's house she first travels 8 km by bus in the East. Here at point A a hospital is situated, from Hospital, Geetika take an auto and goes

6 km in the North, here at point B school is situated. From school she travels by bus to reach Alok's house which is 30^0 East,6km from B

Based on the above information, answer the following questions

- (i) What is the vector distance between Geetika's house and school?
- (ii) What is the Vector distance Geetika's house and school? (ii)How much Geetika travels to reach school? Ans: 14km
- (iii) What is the vector distance from school to Alok's house? Ans: $3\sqrt{3}\hat{\imath} + 3\hat{\jmath}$,

OR

What is the total distance travelled by Geetika for her house to Alok's house? Ans: 20km

2. A plane started from airport at 0 with a velocity of 120km/s towards East. Air is blowing at a velocity of 50km/s towards the North. The plane traveled 1 hr in OP direction with the resultant velocity, from P To R the plane traveled 1hr keeping velocity of 120m/s and finally landed at R.

Based on the above information, answer the following questions:

- (i) What is the resultant velocity from O to P?
- (ii) What is the direction of travel from O to P?
- (iii) What is the Displacement from O to P?

ACHIVITY

- 1. To understand the concepts of decreasing and increasing functions.
- 2. To lunderstand the concepts of local Maxima, local Minima and point of inflection.
- 3. To Verify that amongst all the rectangles of the same perimetre, the square has the Maximum area.
- 4. To verify geometrically that 2x(a+b)=2xa+2xb